Examples in Structural Analysis
Examples in Structural Analysis
Contents
1. Structural Analysis and Design1.1 Introduction
1.2 Equilibrium
1.3 Mathematical Modelling
1.3.1 Line Diagrams
1.3.2 Load Path
1.3.3 Foundations
1.4 Structural Loading
1.5 Statical Indeterminacy
1.5.1 Indeterminacy of Two-Dimensional Pin-Jointed Frames
1.5.2 Indeterminacy of Two-Dimensional Rigid-Jointed Frames
1.6 Structural Degrees-of-Freedom
1.6.1 Problems: Indeterminacy and Degrees-of-Freedom
1.6.2 Solutions: Indeterminacy and Degrees-of-Freedom
2. Material and Section Properties
2.1 Introduction2.1.1 Simple Stress and Strain
2.1.2 Young’s Modulus (Modulus of Elasticity)
2.1.3 Secant Modulus
2.1.4 Tangent Modulus
2.1.5 Shear Rigidity (Modulus of Rigidity)
2.1.6 Yield Strength
2.1.7 Ultimate Tensile Strength
2.1.8 Modulus of Rupture in Bending
2.1.9 Modulus of Rupture in Torsion
2.1.10 Poisson’s Ratio
2.1.11 Coefficient of Thermal Expansion
2.1.12 Elastic Assumptions
2.2 Elastic Cross-Section Properties
2.2.1 Cross-sectional Area
2.2.2 Centre of Gravity and Centroid
2.2.3 Problems: Cross-sectional Area and Position of Centroid
2.2.4 Solutions: Cross-sectional Area and Position of Centroid
2.2.5 Elastic Neutral Axes 40
2.2.6 Second Moment of Area and Radius of Gyration 41
2.2.6.1 The Parallel Axis Theorem 41
2.2.7 Elastic Section Modulus 43
2.2.8 Problems: Second Moment of Area and Elastic Section Modulii 45
2.2.9 Solutions: Second Moment of Area and Elastic Section Modulii 45
2.3 Plastic Cross-Section Properties 51
2.3.1 Stress/Strain Relationship 51
2.3.2 Plastic Neutral Axis 52
2.3.3 Evaluation of Plastic Moment and Plastic Section Modulus 53
2.3.4 Shape Factor 54
2.3.5 Section Classification 54
2.3.5.1 Aspect Ratio 54
2.3.5.2 Type of Section 55
2.4 Example 2.1: Plastic Cross-section Properties Section 1 56
2.5 Problems: Plastic Cross-section Properties 57
2.6 Solutions: Plastic Cross-section Properties 58
3. Pin-Jointed Frames
3.1 Introduction 623.2 Method of Sections 62
3.2.1 Example 3.1: Pin-Jointed Truss 62
3.3 Method of Joint Resolution 65
3.3.1 Problems: Method of Sections and Joint Resolution 67
3.3.2 Solutions: Method of Sections and Joint Resolution 69
3.4 Method of Tension Coefficients 93
3.4.1 Example 3.2: Two-Dimensional Plane Truss 94
3.4.2 Example 3.3: Three-Dimensional Space Truss 95
3.4.3 Problems: Method of Tension Coefficients 98
3.4.4 Solutions: Method of Tension Coefficients 101
3.5 Unit Load for Deflection 113
3.5.1 Strain Energy (Axial Load Effects) 113
3.5.2 Castigliano’s 1 st Theorem 114
3.5.3 Example 3.4: Deflection of a Pin-Jointed Truss 116
3.5.3.1 Fabrication Errors (Lack-of-fit) 120
3.5.3.2 Changes in Temperature 120
3.5.4 Example 3.5: Lack-of-fit and Temperature Difference 120
3.5.5 Problems: Unit Load Method for Deflection of Pin-Jointed frames 122
3.5.6 Solutions: Unit Load Method for Deflection of Pin-Jointed frames 123
3.6 Unit Load Method for Singly-Redundant Pin-Jointed Frames 135
3.6.1 Example 3.6: Singly-Redundant Pin-Jointed Frame 1 135
3.6.2 Example 3.7: Singly-Redundant Pin-Jointed Frame 2 137
3.6.3 Problems: Unit Load for Singly-Redundant Pin-Jointed Frames 140
3.6.4 Solutions: Unit Load for Singly-Redundant Pin-Jointed Frames 141
4. Beams
4.1 Statically Determinate Beams 1574.1.1 Example 4.1: Beam with Point Loads 157
4.1.2 Shear Force Diagrams 159
4.1.3 Bending Moment Diagrams 163
4.1.4 Example 4.2: Beam with a Uniformly Distributed Load 167
4.1.5 Example 4.3: Cantilever Beam 169
4.1.6 Problems: Statically Determinate Beams Shear Force and Bending Moment 170
4.1.7 Solutions: Statically Determinate Beams Shear Force and Bending Moment 173
4.2 McCaulay’s Method for the Deflection of Beams 183
4.2.1 Example 4.4: Beam with Point Loads 184
4.2.2 Example 4.5: Beam with Combined Point Loads and UDL’s 186
4.3 Equivalent Uniformly Distributed Load Method for the Deflection of Beams 189
4.3.1 Problems: McCaulay’s and Equivalent UDL Methods for Deflection of Beams 191
4.3.2 Solutions: McCaulay’s and Equivalent UDL Methods for Deflection of Beams 192
4.4 The Principle of Superposition 202
4.4.1 Example 4.6: Superposition Beam 1 203
4.4.2 Example 4.7: Superposition Beam 2 204
4.4.3 Example 4.8: Superposition Beam 3 205
4.4.4 Example 4.9: Superposition Beam 4 206
4.4.5 Example 4.10: Superposition Beam 5 207
4.5 Unit Load for Deflection of Beams 208
4.5.1 Strain Energy (Bending Load Effects) 208
4.5.2 Example 4.11: Deflection and Slope of a Uniform Cantilever 211
4.5.3 Example 4.12: Deflection and Slope of a Non-Uniform Cantilever 212
4.5.4 Example 4.13: Deflection and Slope of a Linearly Varying Cantilever 214
4.5.5 Example 4.14: Deflection of a Non-Uniform, Simply-Supported Beam 216
4.5.6 Example 4.15: Deflection of a Frame and Beam Structure 218
4.5.7 Example 4.16: Deflection Uniform Cantilever using Coefficients 221
4.5.8 Problems: Unit Load Method for Deflection of Beams/Frames 222
4.5.9 Solutions: Unit Load Method for Deflection of Beams/Frames 225
4.6 Statically Indeterminate Beams 252
4.6.1 Unit Load Method for Singly-Redundant Beams 253
4.6.2 Example 4.17: Singly-Redundant Beam 1 253
4.6.3 Example 4.18: Singly-Redundant Beam 2 255
4.6.4 Problems: Unit Load Method for Singly-Redundant Beams 258
4.6.5 Solutions: Unit Load Method for Singly-Redundant Beams 259
4.7 Moment Distribution Method for Multi-Redundant Beams 269
4.7.1 Bending (Rotational) Stiffness 269
4.7.2 Carry-Over Moment 270
4.7.3 Pinned End 270
4.7.4 Free and Fixed Bending Moments 271
4.7.5 Example 4.19: Single-span Encastre Beam 272
4.7.6 Propped Cantilevers 274
4.7.7 Example 4.20: Propped Cantilever 275
4.7.8 Distribution Factors 278
4.7.9 Application of the Method 279 viii Contents
4.7.10 Example 4.21: Three-span Continuous Beam 280
4.7.11 Problems: Moment Distribution - Continuous Beams 289
4.7.12 Solutions: Moment Distribution - Continuous Beams 290
4.8 Redistribution of Moments 314
4.8.1 Example 4.22: Redistribution of Moments in a Two-span Beam 314
4.9 Shear Force and Bending Moment Envelopes 317
5. Rigid-Jointed Frames
5.1 Rigid-Jointed Frames 3185.1.1 Example 5.1: Statically Determinate, Rigid-Jointed Frame 1 319
5.1.2 Example 5.2: Statically Determinate, Rigid-Jointed Frame 2 323
5.1.3 Problems: Statically Determinate, Rigid-Jointed Frames 328
5.1.4 Solutions: Statically Determinate, Rigid-Jointed Frames 330
5.2 Unit Load Method for Singly-Redundant, Rigid-Jointed Frames 342
5.2.1 Example 5.3: Singly-Redundant, Rigid-Jointed Frame 344
5.2.2 Problems: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames 350
5.2.3 Solutions: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames 352
5.3 Moment Distribution for No-Sway, Rigid-Jointed Frames 368
5.3.1 Example 5.3: No-Sway, Rigid-Jointed Frame 1 370
5.3.2 Problems: Moment Distribution No-Sway Rigid-Jointed Frames 376
5.3.3 Solutions: Moment Distribution No-Sway Rigid-Jointed Frames 378
5.4 Moment Distribution for Rigid-Jointed Frames with Sway 415
5.4.1 Example 5.4: Rigid-Jointed Frame with Sway Frame 1 417
5.4.2 Problems: Moment Distribution Rigid-Jointed Frames with Sway 427
5.4.3 Solutions: Moment Distribution Rigid-Jointed Frames with Sway 429
6. Buckling Instability
6.1 Introduction 4626.1.1 Local Buckling 462
6.1.1.1 Class 1 Sections 464
6.1.1.2 Class 2 Sections 465
6.1.1.3 Class 3 Sections 466
6.1.1.4 Class 4 Sections 466
6.1.1.5 Section Classification 466
6.1.2 Flexural Buckling 467
6.1.2.1 Short Elements 467
6.1.2.2 Slender Elements 468
6.1.2.3 Intermediate Elements 468
6.2 Secondary Stresses 469
6.2.1 Effect on Short Elements 470
6.2.2 Effect on Slender Elements 470
6.2.3 Effect on Intermediate Elements 470
6.3 Critical Stress 470
6.3.1 Critical Stress for Short Columns 471
6.3.2 Critical Stress for Slender Columns 471
6.3.3 Euler Equation 471
6.3.4 Effective Buckling Length 473
6.3.5 Critical Stress for Intermediate Columns 475
6.3.6 Tangent Modulus Theorem 475
6.4 Perry-Robertson Formula 476
6.5 European Column Curves 479
6.5.1 Non-dimensional Slenderness 480
6.6 Example 6.1: Slenderness 487
6.7 Example 6.2: Rolled Universal Column Section 487
6.8 Example 6.3: Compound Column Section 490
6.9 Built-up Compression Members 492
6.9.1 Shear Stiffness for Laced Columns 494
6.10 Example 6.4: Laced Built-up Column 496
6.11 Problems: Buckling Instability 501
6.12 Solutions: Buckling Instability 504
7. Direct Stiffness Method
7.1 Direct Stiffness Method of Analysis 5167.2 Element Stiffness Matrix 516
7.2.1 Beams Elements with Two Degrees-of-Freedom 517
7.2.2 Beams Elements with Four Degrees-of-Freedom 518
7.2.3 Local Co-ordinate System 523
7.2.4 Beams Elements with Six Degrees-of-Freedom 523
7.3 Structural Stiffness Matrix 525
7.4 Structural Load Vector 528
7.5 Structural Displacement Vector 530
7.6 Element Displacement Vector 530
7.7 Element Force Vector 531
7.8 Example 7.1: Two-span Beam 531
7.9 Example 7.2: Rigid-Jointed Frame 537
7.10 Problems: Direct Stiffness Method 546
7.11 Solutions: Direct Stiffness Method 548
8. Plastic Analysis
8.1 Introduction 5978.1.1 Partial Collapse 598
8.1.2 Conditions for Full Collapse 598
8.2 Static Method for Continuous Beams 599
8.2.1 Example 8.1: Encastré Beam 599
8.2.2 Example 8.2: Propped Cantilever 1 600
8.2.3 Example 8.3: Propped Cantilever 2 601
8.3 Kinematic Method for Continuous Beams 602
8.3.1 Example 8.4: Continuous Beam 605
8.4 Problems: Plastic Analysis Continuous Beams 609
8.5 Solutions: Plastic Analysis Continuous Beams 610
8.6 Rigid-Jointed Frames 628
8.6.1 Example 8.5: Frame 1 628
8.7 Problems: Plastic Analysis Rigid-Jointed Frames 1 635
8.8 Solutions: Plastic Analysis Rigid-Jointed Frames 1 636
8.9 Example 8.6: Joint Mechanism 653
8.10 Problems: Plastic Analysis Rigid-Jointed Frames 2 657
8.11 Solutions: Plastic Analysis Rigid-Jointed Frames 2 659
8.12 Gable Mechanism 690
8.13 Instantaneous Centre of Rotation 691
8.14 Example 8.7: Pitched Roof Frame 692
8.15 Problems: Plastic Analysis Rigid-Jointed Frames 3 696
8.16 Solutions: Plastic Analysis Rigid-Jointed Frames 3 698
9. Influence Lines for Beams 730
9.1 Introduction 7309.2 Example 9.1: Influence Lines for a Simply Supported Beam 730
9.2.1 Influence Lines for the Support Reactions 731
9.2.2 Influence Line for the Shear Force 732
9.2.3 Influence Line for the Bending Moment 734
9.3 Müller-Breslau Principle for the Influence Lines for Beams 737
9.4 Influence Lines for a Statically Determinate Beam 737
9.5 Example 9.3: Influence Line for a Statically Indeterminate Beam 739
9.6 The use of Influence Lines 741
9.6.1 Concentrated Loads 741
9.6.2 Distributed Loads 741
9.6.3 Example 9.4: Evaluation of Functions for Statically Determinate Beam 1 742
9.6.4 Example 9.5: Evaluation of Functions for Statically Determinate Beam 2 743
9.7 Example 9.6: Evaluation of Functions for a Statically Indeterminate Beam 745
9.8 Train of Loads 748
9.8.1 Example 9.7: Evaluation of Functions for a Train of Loads 749
9.9 Problems: Influence Lines for Beams 752
9.10 Solutions: Influence Lines for Beams 754
10. Approximate Methods of Analysis
10.1 Introduction 76210.2 Example 10.1: Statically Indeterminate Pin-jointed Plane Frame 1 762
10.3 Example 10.2: Statically Indeterminate Pin-jointed Plane Frame 2 766
10.4 Example 10.3: Statically Indeterminate Single-span Beam 768
10.5 Example 10.4: Multi-span Beam 770
10.6 Rigid-jointed Frames Subjected to Vertical Loads 772
10.6.1 Example 10.5: Multi-storey Rigid-jointed Frame 1 772
10.6.2 Approximate Analysis of Multi-storey Rigid-jointed Frames Using Sub-frames 778
10.6.3 Simple Portal Frames with Pinned Bases Subjected to Horizontal Loads 780
10.6.3.1 Example 10.6: Simple Rectangular Portal Frame – Pinned Bases 780
10.6.4 Simple Portal Frames with Fixed Bases Subjected to Horizontal Loads
10.6.4.1 Example 10.7: Simple Rectangular Portal Frame – Fixed Bases 782
10.7 Multi-storey, Rigid-jointed Frames Subjected to Horizontal Loads 783
10.7.1 Portal Method 783
10.7.1.1 Example 10.8: Multi-storey Rigid-jointed Frame 2 784
10.7.1.2 Approximate Analysis of Vierendeel Trusses using the Portal Method 792
10.7.1.3 Example 10.9: Vierendeel Truss 793
10.7.2 Cantilever Method 796
10.7.2.1 Example 10.10: Multi-storey Rigid-jointed Frame 3 79
Note:
password to open a file www.onlinecivil.net
No comments
Post a Comment